48 research outputs found

    Methodology and applications of city level CO2 emission accounts in China

    Get PDF
    China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2 emissions in China and thus are considered as the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, the emission inventory construction of Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emissions inventories for Chinese cities based on energy balance table. The newly constructed emission inventory is compiled in terms of the definition provided by the IPCC territorial emission accounting approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is corresponding with the national and provincial inventory. In the study, we applied the methods to compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy and goal research in the future

    Characterization of Dynamic Surface Processes by Atomic Force Microscopy

    No full text
    Surfaces are actively involved in numerous biological systems as well as catalytic reactions. The control of matters at surfaces is also of uttermost importance with the advent of nanotechnology. A thorough knowledge of surface processes would not only help to describe the mechanism of different reactions or interactions at surfaces but also lead to rational design of surfaces for construction of functional systems. Among the various surface characterization techniques, Atomic Force Microscopy (AFM) offers outstanding spatial resolution which enables investigation of surface processes at single molecular level and establishment of microscopic models. In this dissertation, AFM is used to study different surface processes, with a focus on the dynamics of surface reactions (Chapter 2) and the dynamic change of surface properties (Chapter 3 & 4). In Chapter 2, the AFM is configured in a certain way to improve the temporal resolution, and the electrochemical etching of gold within a nanoshaved self-assembled monolayer is investigated. Novel kinetic information is obtained which also demonstrates the potential of electrochemical etching in the fabrication of high-resolution nanoplasmonic structures. In Chapter 3 and 4, self-assembled monolayers that contain electroactive species are used to construct dynamic surfaces that can alternate their charge states upon control of applied potential. The nanoscale dynamic surface patterns are fabricated by AFM at nanometer scale and the characterization of the different surface charge states by AFM is explored in Chapter 3. In Chapter 4, AFM is used to probe the adhesion of polyelectrolyte on the dynamic surface, which serves as a model system for studying electrostatic interaction between charged substances in biological systems. Microscopic picture of the interface is described based on the information obtained from Dynamic Force Spectroscopy (DFS). Background information for Chapter 2,3,4 is introduced in Chapter 1

    Income-related health inequality of migrant workers in China and its decomposition: An analysis based on the 2012 China Labor-force Dynamics Survey data

    No full text
    Background: Although migrant workers are a vulnerable group in China, they demonstrably contribute to the country's economic growth and prosperity. This study aimed to describe and assess the inequality of migrant worker health in China and its association with socioeconomic determinants. Methods: The data utilized in this study were obtained from the 2012 China Labor-force Dynamics Survey conducted in 29 Chinese provinces. This study converted the self-rated health of these migrant workers into a general cardinal ill-health score. Determinants associated with migrant worker health included but were not limited to age, marital status, income, and education, among other factors. Concentration index, concentration curve, and decomposition of the concentration index were employed to measure socioeconomic inequality in migrant workers' health. Results: Prorich inequality was found in the health of migrant workers. The concentration index was āˆ’0.0866, as a score indicator of ill health. Decomposition of the concentration index revealed that the factors most contributing to the observed inequality were income, followed by gender, age, marital status, and smoking history. Conclusion: It is generally known that there is an unequal socioeconomic distribution of migrant worker health in China. In order to reduce the health inequality, the government should make a substantial effort to strengthen policy implementation in improving the income distribution for vulnerable groups. After this investigation, it is apparent that the findings we have made warrant further investigation

    Sense-antisense gene overlap is probably a cause for retaining the few introns in Giardia genome and the implications

    No full text
    Abstract Background It is widely accepted that the last eukaryotic common ancestor and early eukaryotes were intron-rich and intron loss dominated subsequent evolution, thus the presence of only very few introns in some modern eukaryotes must be the consequence of massive loss. But it is striking that few eukaryotes were found to have completely lost introns. Despite extensive research, the causes of massive intron losses remain elusive. Actually the reverse question -- how the few introns can be retained under the evolutionary selection pressure of intron loss -- is equally significant but was rarely studied, except that it was conjectured that the essential functions of some introns prevent their loss. The situation that extremely few (eight) spliceosome-mediated cis-spliced introns present in the relatively simple genome of Giardia lamblia provides an excellent opportunity to explore this question. Results Our investigation found three types of distribution patterns of the few introns in the intron-containing genes: ancient intron in ancient gene, later-evolved intron in ancient gene, and later-evolved intron in later-evolved gene, which can reflect to some extent the dynamic evolution of introns in Giardia. Without finding any special features or functional importance of these introns responsible for their retention, we noticed and experimentally verified that some intron-containing genes form sense-antisense gene pairs with transcribable genes on their complementary strands, and that the introns just reside in the overlapping regions. Conclusions In Giardiaā€™s evolution, despite constant evolutionary selection pressure of intron loss, intron gain can still occur in both ancient and later-evolved genes, but only a few introns are retained; at least the evolutionary retention of some of the introns might not be due to the functional constraint of the introns themselves but the causes outside of introns, such as the constraints imposed by other genomic functional elements overlapping with the introns. These findings can not only provide some clues to find new genomic functional elements -- in the areas overlapping with introns, but suggest that ā€œfunctional constraintā€ of introns may not be necessarily directly associated with intron loss and gain, and that the real functions are probably still outside of our current knowledge. Reviewers This article was reviewed by Mikhail Gelfand, Michael Gray, and Igor Rogozin

    A new species of Giardia KĆ¼nstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters

    No full text
    Abstract Background Giardia spp. are flagellated protozoan parasites that infect humans and many other vertebrates worldwide. Currently seven species of Giardia are considered valid. Results Here, we report a new species, Giardia cricetidarum n. sp. in hamsters. Trophozoites of G. cricetidarum n. sp. are pear-shaped with four pairs of flagella and measure on average 14 Ī¼m (range 12ā€“18 Ī¼m) in length and 10 Ī¼m (range 8ā€“12 Ī¼m) in width. The trophozoites of the new species are generally larger and stouter than those of most of the other Giardia spp. and exhibit the lowest length/width ratio (c.1.40) of all recognized Giardia species. Cysts of G. cricetidarum n. sp. are ovoid and measure on average 11 Ī¼m (range 9ā€“12 Ī¼m) in length and 10 Ī¼m (rangeĀ 8ā€“10 Ī¼m) in width and are indistinguishable from the cysts of other Giardia species. Molecular phylogenetic analyses based on beta-giardin, small subunit rRNA, and elongation factor-1 alpha loci all demonstrated that G. cricetidarum n. sp. is genetically distinct from all currently accepted Giardia spp. Investigation of the host range indicated that the new species was only found in hamsters (including Phodopus sungorus, P. campbelli and Mesocricetus auratus), while all the other described mammal-parasitizing species (G. muris, G. microti and G. intestinalis) each infect multiple hosts. Cross-transmission studies further demonstrated the apparent host specificity of G. cricetidarum n. sp. as it only infected hamsters. Trophozoites were found in high numbers in hamster intestines (5 Ɨ 105 ā€“ 5 Ɨ 106) and was rarely detected co-infecting with other Giardia spp. in the common hamster, suggesting it has some advantages in parasitizing hamsters. Conclusions This study has identified a new species of Giardia, which appears to be specific to hamsters, and together with the three other mammal-parasitizing Giardia species with different host ranges, may be able to be used as a model system for the study of evolutionary divergence of host parasitism strategies in Giardia

    Nanoscale Chemical Patterns on Gold Microplates

    No full text
    To generate nanoscale biochemical patterns for fundamental biophysical studies as well as practical biosensors, there remains a need for a high quality and versatile substrate. We show that chemically synthesized gold microplates on indium tin oxide are an ideal substrate that combines several desirable characteristics, including low cost, single crystallinity, optical transparency, electrical conductivity, and ease in chemical functionalization. We have developed a convenient one-pot method that allows us to synthesize plates of desired dimensions and surface coverage directly on indium tin oxide. We have used electrochemical desorption to strip the capping agents, allowing reliable functionalization with alkanethiol self-assembled monolayers. These plates can serve as nanoscale ā€œlab benchesā€ that allow high-resolution scanning probe lithography, high-resolution imaging, and electrical manipulation. Two applications are demonstrated here: nanoshaved self-assembled monolayers (SAMs) on the single crystalline microplates serve as a high-resolution etching resist; AFM nanografting on the plates generates SAM patterns with tailored terminal chemical functionalities
    corecore